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This report discusses, in its first part, the modelling of CW signals generated by an Acousto-
Optic Spectrum Analyzer (AOSA). It also shows how this calculation can be related to pulse modu-
lated signals. In its second part, it discusses the processing of those signals to detect and to estimate
the carrier frequency and the power of an input radar signal. It also proposes a system block diagram
to implement the former two functions.

La premiere partie de ce rapport discute le calcul des signaux g~nir6s par un analyseur de spectre
acousto-optique pour des ondes continues. On montre aussi comment ce calcul peut s'appliquer 6.
des impulsions radar. La deuxi6me partie de ce rapport discute le traitement de ces signaux pour
ditecter la pr6sence d'un signal et pour en estimer la friquence et la puissance. On propose aussi
une fa on d'effectuer ces deux premi~res fonctions.
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1.0 INTRODUCTION

Acousto-Optic spectrum analyzers (AOSA) are viable contenders to be used as receivers for radar
electronic support measures (RESM) applications especially because of their high intercept probability and
their ability to handle simultaneous signals. However, they require a post-processor to extract the desired
information before it is passed on to a computer for further processing. This report discusses, in the first
part, the modelling of the output signal that is generated by an AOSA, and in the second part, the processing
of that signal to detect the presence of a radar signal and to estimate the power and the carrier frequency
of that signal.

2.0 MODEL

A block diagram of the AOSA configuration of interest in this report is shown in Figure 1. The collimated
light wave generated by the laser impinges on the Bragg cell at the Bragg angle 0 B. The diffracted field
distribution in the frequency plane contains the frequency analysis of the input signal. Therefore, an array
of photodetectors placed at the frequency plane can be used to transform the result of this analysis, which is
in the form of optical signals, into electrical signals which can be further processed and analyzed. The input
signal, which is typically an electrical signal from an antenna feed, is transformed by the Bragg cell to an
acoustic wave which interacts with the optical beam with the result that part of the light entering the cell
is diffracted at an angle proportional to the frequency of the input signal.

The technological details and performance of the various components of this spectrum analyzer are
beyond the scope of this report but are currently the object of active research. The efficiency and bandwidth
of the Bragg cell, for instance, are parameters which are sought to be increased, for obvious reasons. It
should be noted that the input signal is usually mixed with a local oscillator, before it is introduced to the
Bragg cell, to obtain a signal within the passband of the transducer.

Theoretical formulation and experimental results of the spectrum analysis performed by this type of
configuration can be found in [1]. A deeper investigation of the details of the Bragg cell diffraction patterns
can be found in [2]. A mathematical model that is frequently used to describe the signal processing of this
AOSA and the one that will be used throughout this report is represented by the following equation [3][4]:

,j. =I (j+1)I 00o 2( )],+1. H(f - fk) ] w(z)u(I - z)exp(-i2xfz)dz df dt (I)

where X, is the voltage produced at the output of the k1  detector for the jth time frame. In this equation,
u(t) is the input signal, w(z) is the window function determined by the Bragg cell and the shaping of the
laser beam, fk is the frequency associated with the k 1h detector, H(f) is a spectral weighting function
that describes the spatial response of an individual detector element and I is the integration time of the
detectors. This equation implies that the instantaneous light intensity distribution shining on the array of
photodetectors is the instantaneous magnitude squared of the Fourier transform of the signals propagating
across the Bragg cell. Each photodetector in the focal plane spatially integrates the light intensity distribution
and converts it to currents which are integrated and sampled during periodic intervals.
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2.1 Continuous Wave Input Signal

For a sinusoidal input, u(t) = A cos(27rfot + 0), it can be shown (see Appendix I) that

A 2 I
= -- i(fk -Jo) (2)

where W(f) is the convolution between the functions G and H,

=(f) H(f - f')G(f')df' (3)

where G(f) is the magnitude squared of the Fourier transformed window function,

I 00 2
G(f) = I0 w(z)exp(-i2irfz)dz (4)

In this report, it will be assumed that H(f) is a rectangular function of unit amplitude and width B Hz,
symmetrical about f = 0. As it was mentioned before, H(f) is in fact a spatial weighting function describing
the response of an individual photodetector, but there is a linear one-to-one correspondence between the
spatial and spectral responses due to the fact that the angle of diffraction is proportional to the frequency
of the input signal. Although we assume H(f) to be a rectangular function, the calculations done in this
report could easily be redone for any arbitrary known H(f).

2.1.1 General case

From [5] we have that the window function w(z) can be described by the following equation:

w~)= exp FG(fo)z - 4T 2 L- 1 )2] rect i-- (5)

where a (in nepers/sec) accounts for the acoustic amplitude attenuation and is a function of the input signal
frequency, T is the ratio of the truncated aperture over the e- 2 intensity width of the Gaussian profile, and
r (in seconds) is the transit time of the acoustic wave across the Bragg cell aperture.

If a = 0 (that is, if we assume that there are no propagation losses in the Bragg cell), we have that
w(z) is a truncated Gaussian profile. To see the effect of the acoustic attenuation on the window function,
we can transform equation (5) into the following form:

w(z) = exp -4T 2  - I+ -2 + (ar)2  ar rect (6)
(rr2+j2 62 21 ( 2)(6

p. V NO "14 1 19p P' I.
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where we can see that the acoustic attenuation causes a shift in the peak position of the Gaussian profile as
well as a decrease in the peak amplitude. However, the general shape of the window function is preserved.

In general, there is ni closed form solution to the Fourier transform of equation (5). So unless some
simplification or approximation is done, we cannot obtain a closed form solution to G(f). However, once we
obtain G(f) we can easily obtain W(f) by numerically integrating G(f) over finite periods since we assume
that H(f) is a rectangular weighting function.

In Appendix II we show how the rectangular rule for numerical integration can be used to obtain an
aliased version of G(f). The resulting normalized numerical equation is:

G0(v) = r2 {[Re (K(V))) 2 + [Im (K(V))12 (7)

where v = fTr and

-E. . co (() (8)

where N is the number of points from w(z) that will be used to calculate one sample of G(f). We see that
the above algorithm is closely related to the DFT algorithm except for the fact that it can be used to obtain
samples of G(f) at any frequency instead of obtaining those for a fixed set of frequencies. Normalizing w(z)
to the following equation:

w(z) = exp [Lz - 4T2 - rect X- (9)

where L = a" and z = , makes it easy to calculate equation (7). Ga(v) is periodic with a period of N

with respect to v, so it should only be used to calculate samples of G(v) for the range < v < E. Since
G.(f) is an aliased version of G(f), N should be made large enough to make this error insignificant and we
should not attempt to calculate samples of G(f) which are lower than a certain value. The value of N and
the lowest value of G(f) that we attempt to calculate using G.(v) depend on G(f), so determining this may
require some trial and error. When a = 0 and T = 0, w(z) is simply a rectangular window and G(f) is a
squared Sinc function. For that case, the sidelobe level is down approximately 50 dB from the peak at a
frequency of 1 . For all other cases, the sidelobes will decrease even more rapidly.

Figure 2 shows the window function, w(z), for the case of ar = 0.5, T = 1. Figure 3 shows the function
G(f) calculated from equation (7) using N = 200 for the same case of ar = 0.5, T = 1. Finally, Figure 4
shows ?i(f) for that same case assuming the photodetectors have a bandwidth of B = 1. It should be noted
that 7W(f) is symmetrical about f = 0 even though this is not shown on Figure 4. This last Figure is the
result of numerically integrating the function G(f). For that reason it is useful to have a numerical algorithm
that can calculate samples of G(f) at any frequency because most numerical integration programs require a
function which can do that.
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2.1.2 Untruncated Gaussian windowing

The preceding section showed how the output of the AOSA could be calculated using an algorithm
closely related to the DFT algorithm. But it has long been recognized that the DFT is computationally
expensive. In fact it is presumed that Carl Friedrich Gauss, the eminent German mathematician, developed
an algorithm that could simplify its calculation as early as the year 1805 [6].

It is therefore worthwhile to note that if we assume that a = 0 and that the Gaussian shaping is not
truncated by the physical size of the Bragg cell, then we can get a closed form expression for G(f). Harms
and Hummels have used this result in [4] and have calculated the transform of w(z) by means of a line
integral in the complex plane.

If we let

w(z) = exp [4T 2 (Z 2 (10)

then

G(v)=727rexp ( wV)(11)

where again v = fr. This greatly simplifies the calculation of W(f) but it should only be used when T is
large. In [4] this approximation for T = 1.63 is used and it is claimed that the resultant error is negligible.

Figure 5 shows the window function, w(z), for the case of T = 2 while Figure 6 shows the function G(f)
calculated using equation (11). Finally, Figure 7 shows 1t(f) for that same case assuming the photodetectors
have a bandwidth of B = f.

2.1.3 Truncated exponential windowing

If we assume that T = 0, that is, if we assume that the laser has no Gaussian shaping but we still want
to take into account the fact that there is attenuation of the acoustic wave as it propagates through the
Bragg cell, then w(z) becomes:

w(z) = exp(-az) rect - (12)

and it is easy to show through simple integration that:

G(v) = r, [I - 2e -L cos(27rv) + e - 2L] (13)
L2 + (2rv)2 1
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Figure 8 shows the window function, w(z), for the case of ar = 0.5 while Figure 9 shows the func-
tion G(f) calculated using equatior (13). Finally, Figure 10 shows 7(f) for that same case assuming the
photodetectors have a bandwidth of B =

2.1.4 Rectangular windowing

As it was mentioned earlier, if we ignore the acoustic loss of the Bragg cell and the Gaussian shaping
of the laser, then w(z) is simply a rectangular window whose duration is determined by the physical size of
the crystal or the width of the light wave impinging on the cell. For that case it is easy to show that w(z)
is as shown in Figure 11 and G(f) is given by the following equation:

r2 sin2 (2rfr/2) (4
G(f) = r2 (2 fr/2)2 (14)

which is shown in Figure 12. The resulting function 7W(f) for rB = 1 is shown in Figure 13.

2.2 Pulse Modulated Input Signal

The preceding section has dealt with the case where the input is a sinusoidal signal or what is also
called a continuous wave (CW) input signal, in the radar context. However, most radar signals are pulse
modulated and one might ask how relevant is the preceding section.

It turns out that this depends on the relationship between the duration of the window function, r, the
integration time of the photodetectors, I, and the pulse width of the radar signal. For example, if the width
of the radar pulse is several times larger than r and I, then the results of the preceding section are perfectly
valid to describe the outputs from the photodetectors for most of the integration time frames occurring
during the pulse.

One might ask about the other extreme when the width of the radar pulse is smaller than r. Lee [1]
has done some useful calculations in that respect. There it is mentioned that there are two general effects
of the window function on the time-integrated illumination pattern shining on the photodetectors:

(1) a broadening effect on the main-lobe width

which inevitably implies an increase of the side-lobe rolloff, and

(2) a smoothing effect on the side-lobe structure.

It should be noted that the integration time used in [1] was variable and was equal to the total duration
of time for which the pulse is propagating through the cell and interacting with the light wave. But the
interesting result is that when the width of the pulse is equal to r/4 or sinaller, then the time-integrated
illumination pattern can be very closely approximated by a Sinc2 function with the first zero located at
1/PW, where PW = pulse width.
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We can therefore get an appreciation of the validity conditions for the results of the previous section.
Basically, the spectrum of the input signal is unaffected by the window function, w(z), when the width of
the radar pulse is smaller than r/4 and it is greatly affected by it, in the way that it was described in the
previous section, when the width of the radar pulse is larger than r.

3.0 PROCESSING

The preceding section has shown how we can calculate 7(f) for different system parameters. Of course,
once we have l"(f) it becomes easy to calculate the outputs of the AOSA because these two are related as
shown in equation (2). As an example, the outputs of the AOSA are shown in Figures 14 and 15 for an
input signal u(t) = A cos(2rfot + 40). Figure 14 shows the output when rB = 3/4 for the case where w(z) is
a rectangular function. Figure 15 shows the output when rB = 6 for that same case. Both of these Figures
show the output when fo corresponds to one fk as well as when fo is exactly in the middle of two fk's.

In this section, we deal with the processing of the outputs of an AOSA to detect the presence of a signal
and to estimate the power and frequency of that input signal. We will approach these three problems using
classical detection/estimation theory as expounded by Van Trees [7].

3.1 Detection

If we let f? = {rj,r 2 ,r 3 , ... ,rN} be the received vector where the ri's are the pixel output values for a
given frame, then we can consider this problem as a binary hypothesis test:

Ho :ri = ni(15)
HI ri = mi +ni, i = 1,2,3,...,N

where the ni's are assumed to be independent, zero-mean, Gaussian random variables with variance a' and
the mi's are defined by

mi = A 2 I (16)

4

where the "i's are the samples from 7t(f) which correspond to the pixel values of our given system.

We will assume for now that the 7i's are known. That is, we are seeking a test to decide whether a
particular signal is present or not. Even though we use a notation which is consistent with the previous
section, the following analysis is more general and applies to the detection of other signals which have not
been dealt with in that section.

In practice, the noise distributions will not have a mean of zero but will rather be characterized by what
is often called "fixed pattern noise". However, as is shown in [8], it is easy to determine the means and

subtract them so that this zero-mean assumption is reasonable.

woo
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Since in the RESM context we have no a priori knowledge of the probabilities for the occurrence of
hypothesis H0 or H1 , we cannot make use of the Bayes' criterion. If we let PF. be the probability of a
false alarm (i.e. the probability that we say the signal is present when it is not) and PD the probability of
detection (i.e. the probability that we say the signal is present when it is), then an obvious criterion would
be to constrain PF and design a test that will maximize PD. This is known as the Neyman-Pearson criterion
and it is shown in [7] that it is satisfied by the likelihood ratio test

H,

A(f) > A (17)
110

where the likelihood ratio is defined as

A()=p(R HIY) (18)
A()-p(R Ho)

where p(R I H,) is the conditional probability of the received vector R? given that hypothesis Hi is true and
where A is defined by the following equation:

PF = p(A(R) I Ho)dA(R) (19)

It is easy to show that for our problem as it is defined in equation (15), the above conditional probabilities
are as follows:

N

p(R I Ho) = 1" o2 exp 2 ,2(20)

N 1 - (r __-mi) 
2

p(R I ) = 'I = '2.a exp L  2o2 (21

i=1

hence the likelihood function can be written as

A(R) = exp " j= - Z.( ri - m)](22)i
2 o,

or even as

A(R) = exp ( 2o,2 m2) (23)

But because the natural logarithm is a monotonic function and both sides of equation (17) must be
positive, the likelihood ratio test is equivalent to the test

%I ~(% A
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'pI
HiInf A(f?)} I n(.\) (24)
Ho

which is very useful given the form of A(ft) as shown in equation (23).

Indeed, we can say that a test satisfying the Neyman-Pearson criterion for our problem is as follows:

2 r;N= m, - zf=1  ,
> n(A) (25)2a,2 <

Ho

which is equivalent to the test

N H,

Zrimi >< (26)

where -t is a constant.

It should be noted that hypothesis H, is a composite hypothesis because it contains the "unwanted"
parameter, A and the test of equation (26) cannot be used unless we know the value of A. However, since

= 4 Lii, we can reduce the above test to the following:

N H,

rdi < (27)
i=1 Ho

because A2 I is a positive quantity. If we let Y = FN 1 ri4i-, then the above test becomes

H,

Y < 7 (28)
Ho

"6 and

PF ] p(Y I Ho)dy (29)

The above test is what is called a "uniformly most powerful" (UMP) test because it is completely defined
1' (including threshold) without knowledge of the parameter "A", which is the amplitude of the input signal.

Of course, the performance of this test will be a function of this parameter, as will be shown shortly.

In order to find the performance of this test, we note that if Ho is true, then Y is a Gaussian random
variable with zero mean and variance ay, = 0 2 - 7jN . And similarly, if tt, is true, then Y is a Gaussian
random variable with mean, i = = g = AL "t and variance, o, = o 1 N 7t. From this
we have that

PF= -=exp 2) dx (30)

ay72r 2ol

1P%'~N~%%% ;%' ~ %0 I~ , ~~~- a ~ OI

'a0'0*. 1
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or

PF = erfc (-) (31)

where

erf (t) _(exp ( (32)

and

PD = 1 exp [_(X _) 2 ] dx (33)

or

PD =erfc 0" )(34)

Or if we use the error function notation of the IMSL library we have that:

PF = IerfCJMSL - (35)

and

PD = -erfcMSL - (36)
2 SL 2o

where

erfcIMSL(t) = exp(-j2)dt (37)

Figure 16 shows the performance of the test of equation (27) as a function of the parameter

which serves as a figure of merit. Indeed z is the S/N ratio times the integration time of the photodetectors(l)
times a factor which quantifies the performance gain due to the matched filter. We can see that the perfor-
mance gain due to the matched filter depends on the number of pixels that are used in the algorithm.
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One would like to know how the performance of the test of equation (27) is affected when the Ni's used
in the test are different from the 'i's that correspond to the signal. This could happen when the frequency
of the input signal is different from the one we assumed or when the signal is actually a short pulse or when
the window function, w(z), that we used to calculate the Ni's was not accurately measured or when the
model used to calculate the Ni's does not accurately represent the processing of the AO processor or for any
other reason.

To calculate this performance degradation, let

N Hi

r < "-' (38)
Ho

be the test, where the 74i's are used in the test but do not actually correspond to the 'i 's of the signal. In
this case, if Ho is true, Y is a Gaussian random variable with zero mean and variance al = a2

But if H, is true, then Y is a random variable with mean

N A21 N

E{Y} = Eiii= 4 ii
i=1 i=1

and variance a, = a2 fi "?. It is easy to show that the performance of the test of equation (38) is the
same as the performance of the UMP test as shown in Figure 16 except that for this case

2 N 2

and hence the performance degradation is determined by the term 7-' =4 fili which can be seen as a figure
of merit to evaluate the degradation of the proposed test.

It should be noted, in concluding this section, that in the RESM context one has no a priori knowledge
of the frequency of the input signal. However, one could use the proposed test to decide on the presence of
many different frequencies. This could be done by using an FIR filter where the tap coefficients are matched
to the Ni's that are expected, the implementation of which is discussed in [8].

3.2 Power Estimation

As it. was mentioned in section 3.1, hypothesis H, is a composite hypothesis because it contains the
unknown parameter "A", which is the amplitude of the input signal (c.f. equations (15) and (16)). However,
it is possible to estimate the value of the parameter "A" from the r,'s of the received vector . But since
the power of the input signal is usually of more interest than the amplitude, we will estimate "A2".

There are many algorithms that could be used to estimate "A2", however, one that has an important
property is the maximum-likelihood (ML) estimate. Indeed, it is mentioned in [9] that if the maximum-
likelihood estimate is unbiased, then it will satisfy the Cramcr-Rao bound with an equality. An estimator
which satisfies the Cram~r-Rao bound with an equality is known in the literature as an efficient estimator.
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Now to find the ML estimate for A 2 we must salve,

i9in (p(RIA 2 )1 ~(9
aA2  0(9

Substituting equation (21) in equation (39) and simplifying gives us that

0 ~(r1 _ M,) 2 /20,2 _0(40)
9A 2  =

Substituting the mi's gives us

4A -ri =0 (41)

Differentiating and simplifying we obtain

N 
2

-HA2 r3i4) 0 (42)

From which we get the desired ML estimate:

M L - FN~ir~ (43)

If we seek to find the mean of the MIL estimate, we have that

E{(AMIL) E ~ 1 (44)
-H2

which becomes

EJM) N Z(7iE (r,} (45)

which can easily be calculated to be

E{4AL} =A (46)

Hence we see that the NIT estimate is unhiased and we can therefore conclude that it is an efficient
estimate of the parameter A 2. That is, it is impossible to find an other unbiased estimate of A2 which has
a smaller variance than the ML estimate of A 2.
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Of course, we could use our estimate of A2 to calculate the likelihood ratio of equation (26) and therefore
obtain what is called a generalized likelihood ratio test. However, this would not be a good thing to do since
we were able to obtain a UMP test for this problem and the generalized likelihood ratio test is bound to
have a poorer performance.

However, for sake of completeness, it can be shown that the generalized likelihood ratio becomes:

H,
(y0) 2  > 2 (47)

Ho

where -42 is a constant and 1Y = EN, ri7i. It can further be shown that the performance of this test is
such that

PD efC ,+ e rf 71-y (48)\ cY, / Y,

and

PF = 2. erfc ( - (49)

where 1' ste eno

where aa is the mean of Y and ay2 is the variance of Y.. Figure 16 also shows the performance of that test
where again

_ :!!2

as for the UMP test.

3.3 Carrier Frequency Estimation

In section 3.1 it was mentioned that, in the RESM context, we have no a priori knowledge of the
probabilities for the occurrence of hypothesis Ho or H1. But even worst than that, we also don't have any
a priori knowledge of the probability distribution function for the carrier frequency of the input signals.
However, if we are given that a signal is present, we can express the likelihood function as

N I (ri - i)' }
P(Rlfo) 7 exp (50)

where the frequency dependence rests upon the mi's which are assumed to be known for different carrier
frequencies, fo. Or to simplify the calculations, we can obtain the log likelihood function which is
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N

-N lnI\2,a 2 ) _ Y, 2a-') (51)

By definition, the ML estimator of the carrier frequency is the frequency that will maximize equation
(51). But since, in general, there exists no closed form expression for the m,'s, it is not possible to get an
expression for the ML estimator. One way to counter this problem is to substitute the m,'s which correspond
to all the possible frequencies in equation (51) and note which frequency actually maximized it. If there
are an infinity of possible frequencies, then instead we can separate the range of frequencies in a number of
bins which form a fine mesh over that range. In that case, the number of bins could be determined by such
factors as the frequency resolution desired or the computing power available or affordable.

It is clear that equation (51) is maximized when

I - MI 2 = IfI + IMI 2 - 2(h,,-) (52)

is minimized. In general, 1I11 2 is not constant for all frequencies but is periodic with period B, which is
the bandwidth covered by one photodetector. Hence, if we calculate equation (52) for a set of frequencies
which are separated in frequency by multiples of B, then equation (52) will reach a minimum when the term
(/R,W2) reaches a maximum. This is an interesting result in light of the fact that this term corresponds to

'. the UMP detection test that was obtained in section 3.1.

Indeed, a block diagram of a system to detect the presence of signals and estimate the carrier frequency
of those signals could be as shown in Figure 17. The matched filter could be implemented by an FIR filter
where the tap coefficients are the calculated Wj's. If many different types of signals could be present, we
could select a filter which gives the smallest overall degradation by using the result obtained in section 3.1.
The output of the matched filter can be compared with a threshold comparator to decide if a signal is present
or not. And finally, of all the outputs of the FIR filter which are above the threshold, the highest one could
be used to estimate the carrier frequency of the input signal. It should be noted that the peak detector block
should also have the capability of recognizing more than one signal per integration frame which could often
be the case for this application.

4.0 CONCLUDING REMARKS

We have discussed the modelling and processing of the signals from an AOSA. The modelling has been
done for CW signals but we have shown that it can be applied to pulse modulated signals as well. The case
of biphase coded signals has not been addressed. The analysis has been kept general as much as possible so
that the results can be tailored to specific systems. We have proposed the block diagram of a system that
could be used to detect and estimate the carrier frequency of an input radar signal.



qkwY~rYW VW wvv9

- 30 -

PHOTODETECTOR

ARRAY

MATCHED
FILTER

THRESHOLD
COMPARATOR

F PEAKI
DETECTOR

FIGURF 17 - DETECTION/ESTIMATION SYSTEM

La gaI



IL
-31 -

5.0 REFERENCES

[1] L , Jim P.Y., 'Acoustooptic Spectrum Analysis of Radar Signals Using an Integrating Photodetector
Array', Applied Optics, Vol. 20, No. 4, pp. 595-600, February 15, 1981.

[2] Vander Lugt, A., 'Bragg Cell Diffraction Patterns', Applied Optics, Vol. 21, No. 6, pp. 1092-1100,
March 15, 1982.

[3] Kellman, Peter, et. al., 'Integrating Acousto-Optic Channelized Receivers', Proceedings of the IEEE,

Vol. 69, No. 1, pp. 93-100, January 1981.

[4] Harms. B.K. and Hlummels, D.R., 'Analysis of Detection Probability for the Acoustooptic Receiver',
IEEE transactions on Aerospace and Electronic Systems, Vol. AES-22, No. 4, pp. 326-339, July 1986.

[5] lecht, D.L., 'Spectrum Analysis Using Acousto-Optic Devices', Optical Engineering, Vol. 16, No. 5,

pp. 461-466, September/October 1977.

[6] Hleideman, Michael T., et. al., 'Gauss and the History of the Fast Fourier Transform', IEEE ASSP
Magazine, Vol. 1, No. 4, pp. 14-21, October 1984.

[7] Van Trees, Harry L., Detection, Estimation, and Modulation Theory, Part I, New York: Wiley, 1968.

[8] Inkol, Robert J., Farley, Guy, 'Post Processor Design Concepts Applicable to an Acousto Optic Spectrum
Analyzer (U)', Unclassified, Technical Note, DREO TN 87-2, January 1987.

[91 Haykin, S., et. al., Array Signal Processing, pp. 208, Prentice-llall, 1984.



- 32 -

CALCULATION OF Xjk FOR A CW INPUT
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We have defined,

j iiIj H(f - fLk) wl(1)u(t - 13) exp(-i2f)d3~ df dt(I-)

which can be rewritten

= J j j H(f - fk)w(a)w*(13)u(t - au(t- 13)

exp [-i27rf(a - 3)]dcrd)3dfdt (1-2)

Now, if

u(t) = A cos(2,rfot + 4) (1-3)

then

u( - a)u(t -)3) = A cos [2fo(t - a) + Acos [27rfo(i -,0)+] (1-4)

which can be rewritten as

-Fcs[47rfot - 2rfo(o + 13) + 20]1 + cos [2irfo(a - 10)11 (1 -5)

Hence,

Xjk = L2~ i:jl~ 1. 00 H(f - fk)w(a)w*(1){cos[2irfo(a - 13)]

+ cos[4wfot - 2rfo(a + 13) + 201 } exp [-i27rf (c-#1)] daxd1df d1 (1 -6)

or

A 2  00 00 00
Xjk T f j0 H(f - fk)w(c,)w* () exp [-i 2 irf (or - 03)]

jcos [27rfo(a - 31+ cos [4;rfol - 2 -xfo(a + 13) + 20]1}di dc d13 df (I - 7)

Now,
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exp -i21rf (a - 6) o [2rfo(a - 13)] + cos [4wfot -2irfo(a + 13) + 20]}dt

=exp [-i2rf(a - i3)] {cos [2lrfo@a -,6)]11

+ sin [4vfot - 27rfo(c + /3) + 20] U~+ 1)1  (1-8)
44fo }p

which if I >~ 1/47rfo

Sexp [- i2 7rf(a - 63)] cos [2 rfo (a - 13)]1(I-9

Now we should note that

exp [-i22rf (a - 03)1 cos [2vfo(a - i8)] 1

= exp [-i27rf(cr - #) {exp [i27fo@a - #)I + exp [-i27rfo(a - 0))

= j.exp [-i27r(c -,6)(f - fo)] + exp [-i2w(a - 03)(f + fo)]Jl (I - 10)

Substituting (1-10) in (1-7) we get

X~r~~ ~ j j H(f - fk)w(c,)w* (O)f{exp [-i2r(ca - 16)(f - fo)]

If we define

,oo 2

which is the magnitude squared of the Fourier transformed window function, then we can rewrite

G(f) f j w(a)exp(-i2xfa)dcvfLI w* (3) exp(i27rf O)d3

. f- 00 w(ov)w* (13) exp(-i2wf a) exp(i21f36hda d#3

f ~ w(a)w*(,0) exp [-i2wjf(a - fl)] dad#l (1-13)

M 11 -IIIII I FP1.l~l1i~ ti

61 1 4 111 12 = 11, M a
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and hence

G(f + fo) = j j w(a)w*(3) exp (-i2r(a - 3)(f + fo) dot d,8 (I - 14)

and similarly

G(f - fo) = j j w(i)w* () exp [-i27r(a - 0)(f - Jo)] da do3 (I - 15)

Substituting (1-14) and (1-15) in (I-11) we get

A 2 If0
Xk , H(f -fk)[G(f -fo)+G(f + fo)]df (I- 16)

Now if we assume that H(f) is symmetrical about f = 0, then

H(f - fk)G(f + fo)df = H(fk - f)G(f +/o)df
o'o0 fo

= H [fk - (f + fo) + fo] G(f + fo)df

= f H(fh + fo - f')G(f')df' = 7-1(fk + fo) (I - 17)

where,

W)= H(f - f')G(f')If' (I - 18)f CO

which is the convolution between the functions G and H. And similarly, it can be shown that

W(A - fo) = H(f - fk)G(f - fo)df (I - 19)

Hence, substituting (1-17) and (1-19) in (1-16) we get that

A2k!t L (I -20)
X 2 fk"- "7i(fk - fo) + (fk + fo)}

But "i(fk + fo) is very small compared to "H(fk - fo) for large values of fk or fo, hence

Xj k - f -fo) (I - 21)

4.
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APPENDIX II

NUMERICAL CALCULATION OF G(f) FOR THE GENERAL CASE
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From equation (5) we have that

w(z) = exp [az - 4T 2 ( -1)2] rect Z- 1(11 -1)

or we could normalize w(z) and get

where L = a-r and x =

From equation (4) and (11-1) we have that

G~) jw(z) exp(-i27rf z)d4 (H1-3)

A closed form solution to this equation does not exist in general unless some simplification or approx-
imation is done. The rectangular rule can provide a numerical estimate of this integration. This gives the
following equation as an estimate of equation (H1-3):

N-i 2

Ga(f) = lAt w(nAt) exp(-i27rfnAt) (11 -4)

n0O

Now, in this case we will let At = rIN where N is the number of points from w(z) that will be used to
calculate one sample of G(f).

Replacing At = r/N in (11-4) we have:

G.(f)w T (21) ( N (H1-5)

11=0

if we let v f rT we get

G,(V) W (n ( ) exp (-i27rvn) 21116

or if we express the above equation in rectangular coordinates, we get

G.(v) = JrKI12  (11-7)

i ml~it1111 II I 11; 

IC
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where,

K n=OlW(! cos2.tI iw (!)) sin (2wvn)] 118
N

hence,

Ga(v) = r2 {[Re(K)]2 + [Im(K)]2} (II- 9)

To consider the error associated with the approximation of (11-9) let

N-1

Xa(f) = At E w(nAt)exp(-i27rfnAt) (II- 10)
n=O

It is easy to see from (11-4) that

Ga(f) = IXa(f) 2  (II- 11)

We note that the Fourier transform of a delayed Dirac delta function, 6(t - to), is e - i r
f
l . Thus weN-I

may regard (11-10) as the Fourier transform of At = w(nAt)6(t - nAt):

Xa(f) = Y At E w(nAt)b(t - nAt) (11- 12)

Since w(z) is zero outside the interval [0, r], we may rewrite (11-12) as

X 0 (f) = r{w(z) " At E 6(z - nAt)} (11-13)

which can be transformed, using the well known property for the Fourier transform of multiplied time
functions, to the following:

Xa(f) = W()*Y {At Z (t - nAt)

which becomes

X.M ~ i WM ( - M)
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which finally becomes

co

So we see that the approximation of equation (11-9) is in fact an aliased version of G(f). We also see
that G.(f) is periodic with period 1/At, hence there is no point in calculating G.(f) outside the range of
frequencies

-N N

2r f 2r

since At = r/N. Or if we use the normalized version G.(v), then the range of frequencies is

-N N 2 < V <
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